

Test Report PPR-3205

Type CSTO for screened s	single core polymeric cable	es without armour
이 방법은 것은 안에서 여행하지만 것 같은 것이라. 영향 것이 같다.		
629.1 S3:2015 (Draft) table		
45	-lom (27.01.17
Bayram Cataltepe (Laboratory Technician)	Şignature:	Date:
Christoph Baier (Laboratory Manager)	Signature:	Date: 27.01.17
Per Christian Olving (Product Manager)	Signature:	Date: 27/1-17
	Type CSTO for screened s TE Connectivity reference: Requirements according to Sequences A1 and A3 and All samples passed the te 629.1 S3:2015 (Draft) tabl (Um) 20,8/36(42) kV 45 Bayram Cataltepe (Laboratory Technician) Christoph Baier (Laboratory Manager) Per Christian Olving	45 Bayram Cataltepe (Laboratory Technician) Christoph Baier (Laboratory Manager) Per Christian Olving Signature:

Tyco Electronics Raychem GmbH a TE Connectivity LTD. Company Finsinger Feld 1 D-85521 Ottobrunn Munich, Germany Tel.: +49-89-6089-0 Fax: +49-89-6096-345

© Raychem reports may only be used in their original form

Content

1	General information	3
1.1	Description of the test objects	. 3
1.2	Description of the test cables	. 3
1.3	Test standards	. 4
1.4	Test facilities	. 4
2	Test sequence and requirements	5
3	Test setups	6
3.1	AC voltage dry withstand	. 6
3.2	Partial discharge at ambient temperature	. 7
3.3	Partial discharge at elevated temperature	. 8
3.4	Impulse voltage	. 9
3.5	Heating cycle voltage in air1	10
3.6	Immersion test for outdoor terminations1	11
3.7	Humidity test for indoor terminations1	11
4	Results1	12
4.1	AC voltage dry withstand1	12
4.2	Partial discharge at ambient temperature1	12
4.3	Impulse voltage at elevated temperature1	13
4.4	Heating cycle voltage in air	18
4.5	Immersion test for outdoor terminations1	19
4.6	Partial discharge at elevated and ambient temperature2	21
4.7	Impulse voltage at ambient temperature2	23
4.8	AC voltage dry withstand	
4.9	Partial discharge at ambient temperature	33
4.10	Examination	
4.11	Humidity test	
4.12	Examination	36
Α.	Appendices	37
A.1 I	dentification of test cable 50mm ²	37
A.2 I	dentification of test cable 150mm ²	38
A.3 I	dentification of test cable 95mm ²	39
A.4 I	nstallation instructions	40
A.5 k	Kit content lists	45

1 General information

1.1 Description of the test objects

Test objects:	4 indoor terminations type CSTI-6122-ML-2-13 installed on 50mm ² (test objects A),
	4 outdoor terminations type CSTO-6122-ML-2-13
	installed on 50mm ² (test objects B),
	4 indoor terminations type CSTI-6122-ML-2-13
	installed on 150mm ² (test objects C),
	4 outdoor terminations type CSTO-6122-ML-2-13
	installed on 150mm ² (test objects D)
	4 indoor terminations type CSTI-6122-ML-2-13
	installed on 95mm ² (test objects E)
Manufacturer:	TE Connectivity Kunshan PRC
TE kit reference:	CSTI-6122-ML-2-13,
	CSTO-6122-ML-2-13
Part description:	CSTI-35-BD-18-533-FS,
	CSTO-35-BD-18-533-FS
Rated voltage $U_0/U(U_m)$:	20,8/36 (42) kV
Application range:	screened single core polymeric cables without armour with
	diameter over insulation from 24,5 mm up to 33,5 mm
Connector type:	Mechanical cable lug BLMT-35/150-13
Installation instructions:	See Appendix A.4
List of kit content:	See Appendix A.5

1.2 Description of the test cables

Length of each test loop:	4.2 m (without test object)
Cable type:	Single core cable with XLPE insulation, type VDE 0276
	N2XSY(see Appendix A.1)
Cable conductor material:	Copper
Cable conductor cross-section:	50 mm ²
Rated voltage of cable $U_0/U(U_m)$:	18/30 (36) kV

Length of each test loop:	4.2 m (without test object)
Cable type:	Single core cable with XLPE insulation, type VDE 0276
	NA2XS2Y(see Appendix A.2)
Cable conductor material:	Aluminium
Cable conductor cross-section:	150 mm ²
Rated voltage of cable $U_0/U(U_m)$:	18/30 (36) kV

Length of each test loop:3.0 m (without test object)Cable type:Single core cable with XLPE insulation, type VDE 0276
NA2XS(F)2Y (see Appendix A.3)Cable conductor material:AluminiumCable conductor cross-section:95 mm²Rated voltage of cable U_0/U (U_m):18/30 (36) kV

1.3 Test standards

Requirements according to CENELEC HD 629.1 S3 from 2015-09 (Draft): Test requirements on accessories for use on power cables of rated voltage from 3,6/6 (7,2) kV up to 20,8/36 (42) kV, Part 1: Cables with extruded insulation; Table 6 Sequences A1 and A3 and Table 7 for rated voltages U_0/U (U_m) 20,8/36(42) kV

1.4 Test facilities

The installation of the test objects as well as the electrical tests were carried out by technicians of Tyco Electronics Raychem GmbH in the High Voltage Laboratory in Ottobrunn/Germany.

2 Test sequence and requirements

The test requirements are according to CENELEC HD 629.1 S3 from 2015-09 (Draft), Table 6 Sequences A1 and A3 and Table 7 for rated voltage $U_0/U(U_m)$ 20,8/36 (42) kV.

	Test	Test clause of	Test requirements	Notes
		EN 61442		
1	AC voltage dry withstand	4	5 min at 93,5 kV, no breakdown	-
2	Partial discharge at ambient temperature	7	Max. 10 pC at 42 kV	-
3	Impulse voltage at elevated tempera- ture	6	10 impulses of each polarity at ±200 kV, target temperature 95 - 100°C, no breakdown	-
4	Heating cycle voltage in air	9	126 heat cycles, target tem- perature 95 - 100°C, 52 kV, no breakdown	-
5	Immersion	9.4	10 heat cycles, target temper- ature 95 - 100°C	Only required for outdoor terminations;
6	Partial discharge at elevated tempera- ture	7	Heating up, target tempera- ture 95 - 100°C, max. 10 pC at 42 kV	-
7	Partial discharge at ambient temperature	7	Max. 10 pC at 42 kV	-
8	Impulse voltage at ambient temperature	6	10 impulses of each polarity at ±200 kV, no breakdown	-
9	AC voltage dry withstand	4	5 min at 93,5 kV, no break- down	-
10	Partial discharge at ambient temperature	7	Max. 10 pC at 42 kV	-
11	Examination	-	-	-

The test requirements are according to CENELEC HD 629.1 S3 from 2015-09 (Draft), Table 6 Sequences A3 for rated voltage $U_0/U(U_m)$ 20,8/36 (42) kV.

	Test	Test clause of EN 61442	Test requirements	Notes
1	Humidity test	13	300 h at 26 kV	Only required for indoor ter- minations
2	Examination	-	-	-

3 Test setups

3.1 AC voltage dry withstand

The cable conductors of the test objects were connected to an AC voltage provided by a test transformer, the screens were put on ground potential (**Figure 1**). The voltage measurement was carried out with a capacitive divider. The measuring uncertainty within a range of 10 kV to 300 kV was 0.91%.

Technical data:

ТТ	Test transformer:
C-Div	Capacitive divider:
ТО	Test object

350 kV, 175 kVA, 50 Hz 75 pF (high voltage side)

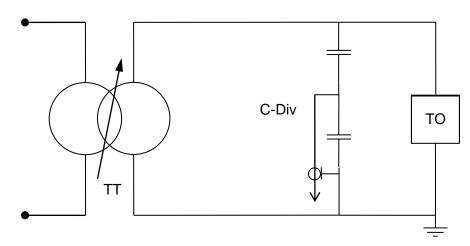


Figure 1: AC voltage dry withstand test setup

Measurement equipment:

Object	Туре	Calibration number	Calibration date
Capacitive divider	TUR MCF 75/350 P	000132 D-K-17601-01-00	2015-03
Coaxial cable	-	000132 D-K-17601-01-00	2015-03
AC peak voltmeter	LDIC voltage unit	000132 D-K-17601-01-00	2015-03

3.2 Partial discharge at ambient temperature

The cable conductors of the test objects were connected to an AC voltage provided by a test transformer, the screens were put on ground potential (**Figure 2**). The voltage measurement was carried out with a capacitive divider. The measuring uncertainty within a range of 10 kV to 300 kV was 0.91%. For the extraction of the partial discharge (PD) signals, a coupling capacitor and a quadrupole (i.e. measuring impedance) were used. A coil was installed to block interferences coming from the transformer side of the test setup. Prior to the test, the complete test arrangement including the test object was calibrated using a PD-calibrator.

Technical data:

L

ТТ	Test transformer:	
C-Div	Capacitive divider:	
C-C	Coupling capacitor:	
Q	Quadrupole	

Coil

350 kV, 175 kVA, 50 Hz 75 pF (high voltage side) 1000 pF

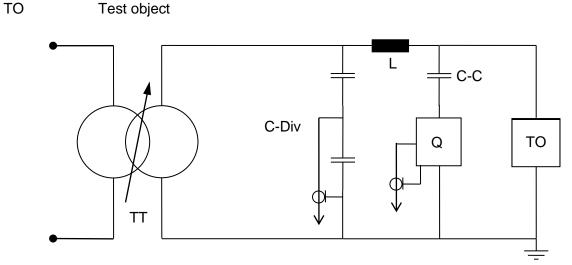


Figure 2: Partial discharge test setup

Measurement equipment:

Object	Туре	Calibration number	Calibration date
Capacitive divider	TUR MCF 75/350 P	000132 D-K-17601-01-00	2015-03
Coaxial cable	-	000132 D-K-17601-01-00	2015-03
AC peak voltmeter	LDIC voltage unit	000132 D-K-17601-01-00	2015-03
PD-measurement system	LDIC LDD-5	calibrated with PD- calibrator	n/a
PD-calibrator	LDIC LDC-5	RY-1341 & verified with PD-calibrator tester	2016-06-01
PD-calibrator tester	LDIC LDT-5	RY-1222	2016-07-15

3.3 Partial discharge at elevated temperature

The cable conductors of the test objects were connected to an AC voltage provided by a test transformer, the screens were put on ground potential (**Figure 2**). The voltage measurement was carried out with a capacitive divider. The measuring uncertainty within a range of 10 kV to 300 kV was 0.92%. For the extraction of the partial discharge (PD) signals, a coupling capacitor and a quadrupole (i.e. measuring impedance) were used. A coil was installed to block interferences coming from the transformer side of the test setup. Prior to the test, the complete test arrangement including the test object was calibrated using a PD-calibrator. The test objects were installed in a way that a closed loop was formed, which could be heated using an induced AC current provided by a heating transformer supplied by a variable transformer. The cable should be heated to a conductor temperature 5 - 10 K above the maximum cable conductor temperature in operation, i.e. $95 - 100^{\circ}$ C for XLPE-cables. The temperature of the cable conductor was measured in-line using a reference cable of the same type as the test loops with a length of 3 m, a type K thermocouple and fibre optical temperature measurement transmission systems. The current was measured by a clamp meter.

3.4 Impulse voltage

The cable conductors of the test objects were connected to a Marx-generator with 8 stages, a maximum cumulative charging voltage of 800 kV and a maximum impulse energy of 24 kJ, the screens were put on ground potential (**Figure 3**). The voltage measurement was carried out with a resistive-capacitive divider and an impulse measurement system. The measuring uncertainty for the voltage amplitude within a range of 50 kV to 450 kV was 0.88% and for the time max. 4.76%.

Technical data:

Configuration4 times 2 parallel stages in series:400 kV max. charging voltageRC-DivDamped capacitive divider:670 pF, 100 Ω (high voltage side)TOTest object

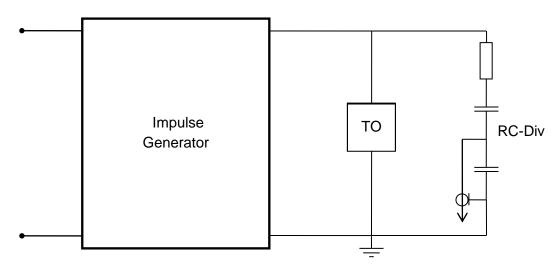


Figure 3: Impulse voltage test setup

Measurement equipment:

Object	Туре	Calibration number	Calibration date
Damped capacitive divider	Haefely CS1000	000177 D-K-17601-01-00	2015-03
Coaxial cable	-	000177 D-K-17601-01-00	2015-03
Digital transient re- corder	Haefely DiAS 733	000177 D-K-17601-01-00	2015-03

3.5 Heating cycle voltage in air

The cable conductors of the test objects were connected to an AC voltage provided by a test transformer, the screens were put on ground potential (**Figure 4**). The voltage measurement was carried out with a capacitive divider. The measuring uncertainty within a range of 10 kV to 100 kV was 0.59%. The test objects were installed in a way that a closed loop was formed, which could be heated using an induced AC current provided by a heating transformer supplied by a variable transformer. The cable should be heated to a conductor temperature 5 - 10 K above the maximum cable conductor temperature in operation, i.e. 95 - 100°C for XLPE-cables. The temperature of the cable conductor was measured in-line using a reference cable of the same type as the test loops with a length of 3 m, a type K thermocouple and fibre optical temperature measurement transmission systems. The heating cycles were controlled by an automated regulation system.

Technical data:

TT	Test transformer:
C-Div	Capacitive divider:
VT	Variable transformer:
HT	Heating transformer:
ТС	Thermocouple:
ТО	Test object

100 kV, 100 kVA, 50 Hz 100 pF (high voltage side) 230 V, 6.9 kVA, 50 Hz 9.2 kVA Type K

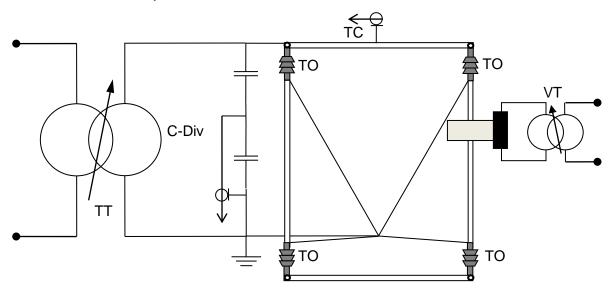


Figure 4: Heating cycle voltage test setup (exemplary for one cable cross section and one type of termination)

3.6 Immersion test for outdoor terminations

The test objects were installed in a way that a closed loop was formed, which could be heated using an induced AC current provided by a heating transformer supplied by a variable transformer. The cable should be heated to a conductor temperature 5 - 10 K above the maximum cable conductor temperature in operation, i.e. 95 - 100°C for XLPE-cables. The temperature of the cable conductor was measured in-line using a reference cable of the same type as the test loops with a length of 3 m, a type K thermocouple and fibre optical temperature measurement transmission systems. The heating cycles were controlled by an automated regulation system. The test objects were mounted upside down in a water tank with a water height of min. 0.3 m above every part of the termination.

3.7 Humidity test for indoor terminations

The test objects were placed in a special chamber with a volume of about 10 m³. The humidity was produced by means of special nozzles able to spray water into the chamber and adjusted to a flow of (0.4 ± 0.1) l/h/m³. Prior to the test the conductivity of the water has been adjusted by adding salt resulting in a conductivity of (70 ± 10) mS/m.

4 Results

4.1 AC voltage dry withstand

Date:	2016-10-11
Ambient temperature:	25°C
Ambient relative humidity:	38%
Ambient pressure:	953 hPa

Test objects	Test voltage û/√2	Duration	Result
А	93,3 kV	5 min	No breakdown
В	93,3 KV	5 11111	No breakdown
С	93,5 kV	5 min	No breakdown
D	90,0 KV	5 11111	No breakdown

Note: All test objects installed on the same cable cross section were tested simultaneously.

Requirement: No breakdown shall occur.

Result: All test objects passed the test.

4.2 Partial discharge at ambient temperature

Date:	2016-10-11
Ambient temperature:	25°C
Ambient relative humidity:	38%
Ambient pressure:	953 hPa

Test object	Test voltage û/√2	Calibration charge	Noise	Result
А	42 kV	10 pC	≤ 3 pC	PD-level ≤ 3 pC
В	42 kV	10 pC	≤ 3 pC	PD-level ≤ 3 pC
С	42 kV	10 pC	≤ 3 pC	PD-level ≤ 3 pC
D	42 kV	10 pC	≤ 3 pC	PD-level ≤ 3 pC

Note: All test objects of the same type of termination and cable cross section were tested simultaneously.

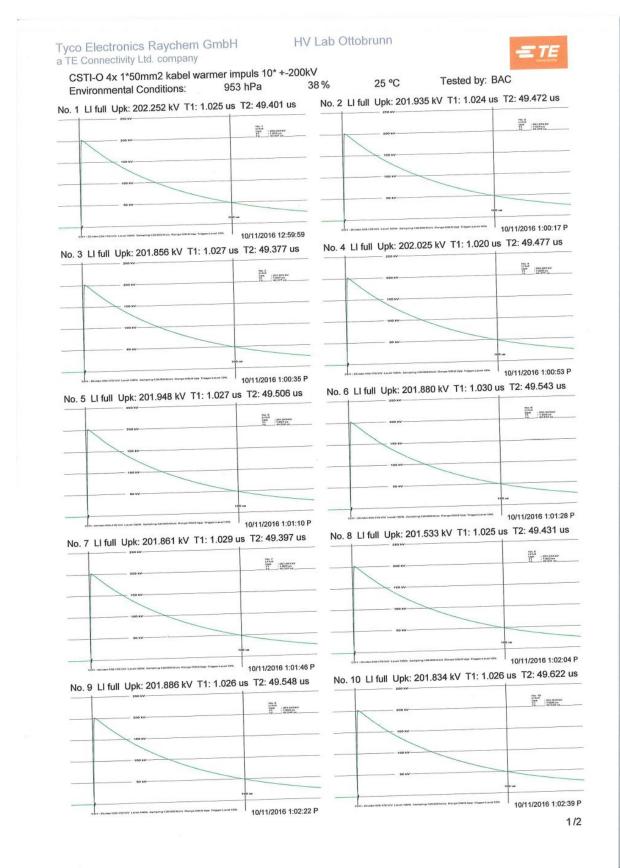
Requirement: Partial discharge level shall not exceed 10 pC.

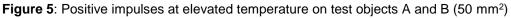
Result: All test objects passed the test.

4.3 Impulse voltage at elevated temperature

The test object were exposed to 10 impulses of positive and negative polarity each. Before each series of 10 impulses, 3 calibration impulses of 50%, 65% and 80% of the test voltage level were applied. The recorded impulses are shown in **Figure 5** to **Figure 8**.

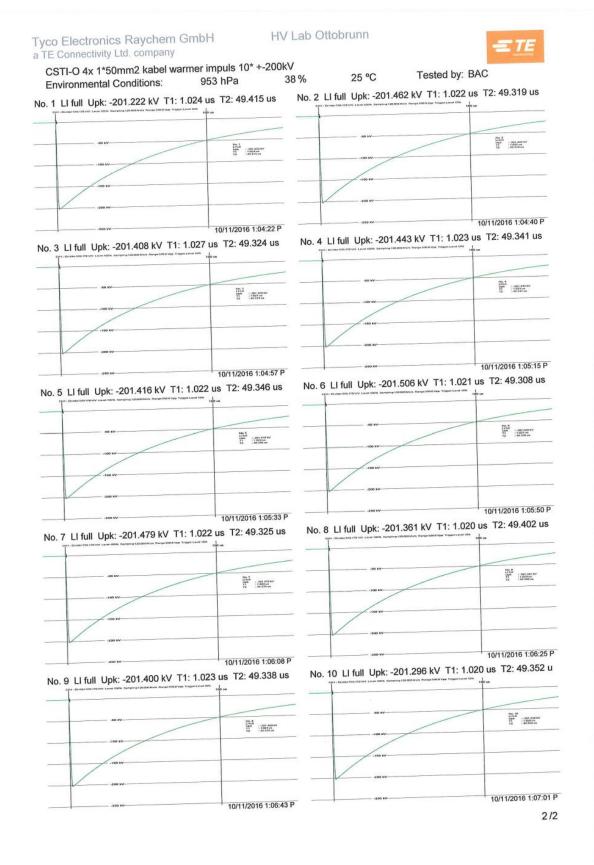
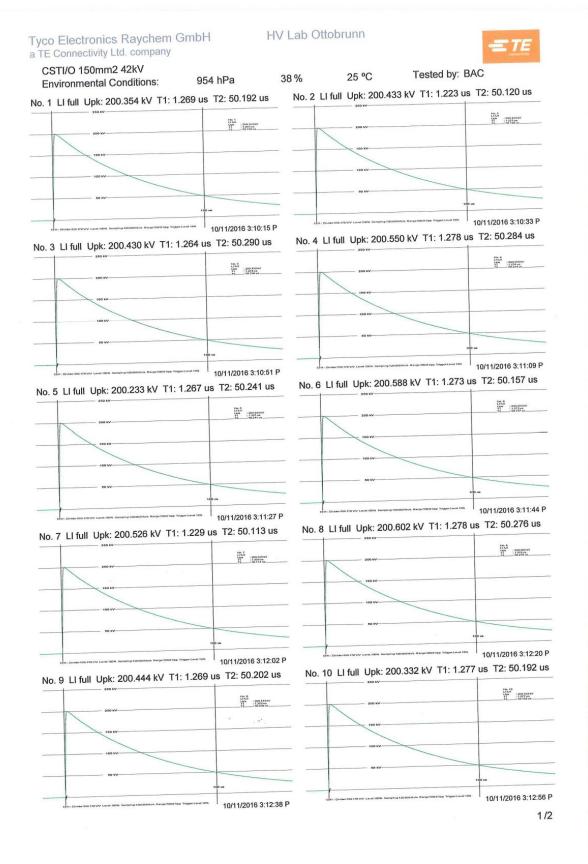
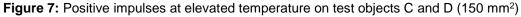
Date:	2016-10-11
Ambient temperature:	25°C
Ambient relative humidity:	38%
Ambient pressure:	953 hPa

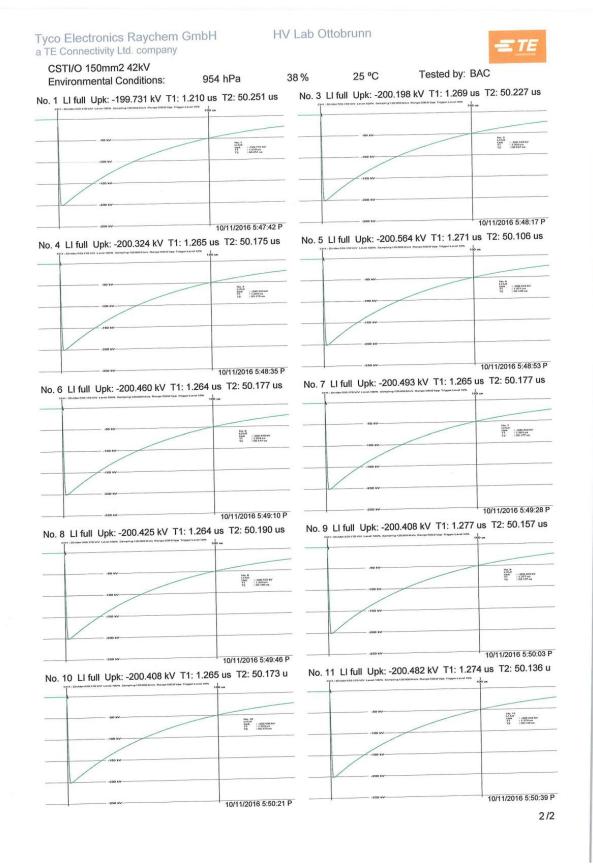

Test object	Voltage û	Front time	Time to half- value	Number of impulses	Result
А	±200 kV	1.020 µs	49.308 µs to	10 of each	No breakdown
В	±200 KV	to 1.030 μs	49.622 μs	polarity	No breakdown
С	±200 kV	1.106 µs to	50.106 µs to	10 of each	No breakdown
D	±200 KV	1.278 μs	50.290 μs	polarity	No breakdown

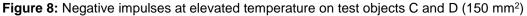

Note: All test objects installed on the same cable cross section were tested simultaneously.

Requirement: Each test object shall withstand 10 positive and 10 negative impulses without breakdown.

Result: All test objects passed the test.

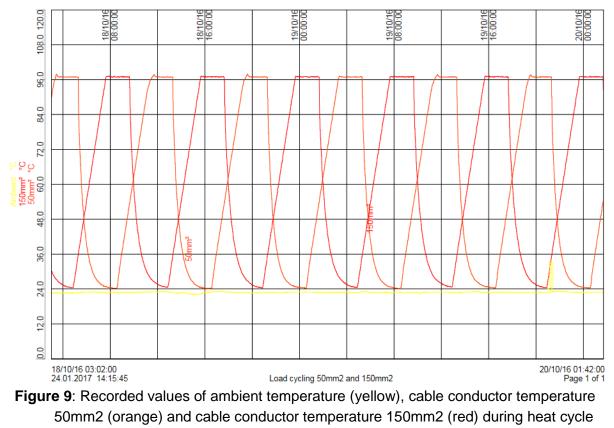





Figure 6: Negative impulses at elevated temperature on test objects A and B (50 mm²)



4.4 Heating cycle voltage in air

The recorded values of the test voltage, heating current, ambient temperature and cable conductor temperature are shown in **Figure 9**.


Test object	Test voltage û/√2	Time of heating	Time of cooling	Number of cycles	Result
А	52 kV	5 h	3 h	126	No breakdown
В	JZ KV	511	1 511	120	No breakdown
С	52 kV	/ 5 h	3 h	126	No breakdown
D	JZ KV	511	511	120	No breakdown

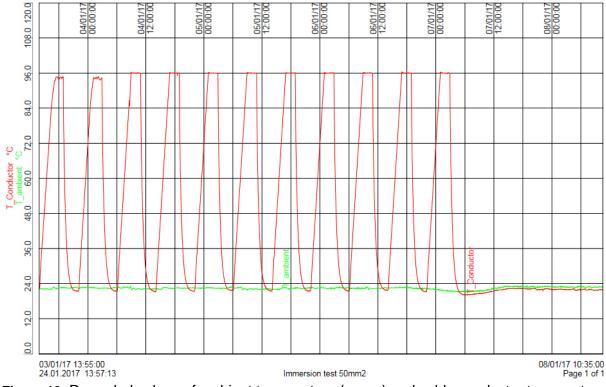
Date: 2016-10-14 to 2016-12-14

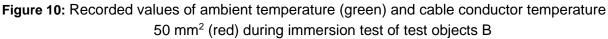
Note: All test objects installed on the same cable cross section were tested simultaneously.

Requirement: No breakdown shall occur.

Result: All test objects passed the test.

voltage test in air


4.5 Immersion test for outdoor terminations


The recorded values ambient temperature and cable conductor temperatures are shown in **Figure 10** and **Figure 11**.

Date: 2017-01-03 to 2017-01-07 (test object B) 2017-01-10 to 2017-01-14 (test object D)

Test object			Number of cycles	Result
Α	n/a			-
В	5 h	3 h	10	
С	n/a			-
D	5 h	3 h	10	

Result: All test objects passed the test.

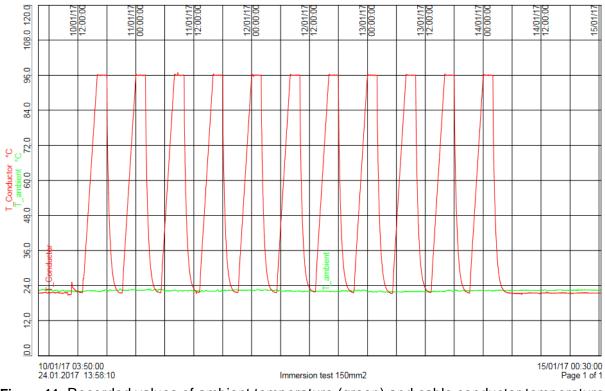


Figure 11: Recorded values of ambient temperature (green) and cable conductor temperature 150 mm² (red) during immersion test of test objects D

4.6 Partial discharge at elevated and ambient temperature

4.6.1 Elevated temperature

Date:	2016-12-15 (Test object A and C)
Ambient temperature:	25°C
Ambient relative humidity:	33%
Ambient pressure:	960 hPa
Date:	2017-01-09 (Test object B)
Ambient temperature:	25°C
Ambient relative humidity:	30%
Ambient pressure:	960 hPa
Date:	2017-01-16 (Test object D)
Ambient temperature:	25°C
Ambient relative humidity:	30%
Ambient pressure:	960 hPa

Test object	Test voltage û/√2	Time of heating	Calibration charge	Noise	Result
А	42 kV	5 h	10 pC	≤ 3 pC	PD-level ≤ 3 pC
В	42 KV	511	io po	⊒ 3 pC	PD-level ≤ 3 pC
С	42 kV	5 h	10 pC	≤ 3 pC	PD-level ≤ 3 pC
D	42 KV	511	TO PC	2 3 pC	PD-level ≤ 3 pC

Note: All test objects installed on the same cable cross section were tested simultaneously.

Requirement: Partial discharge level shall not exceed 10 pC.

Result: All test objects passed the test.

4.6.2 Ambient temperature

Date:	2016-12-15 (Test object A and C)
Ambient temperature:	25°C
Ambient relative humidity:	33%
Ambient pressure:	960 hPa
Date:	2017-01-11 (Test object B)
Ambient temperature:	25°C
Ambient relative humidity:	30%
Ambient pressure:	960 hPa

Date:2017-01-17 (Test object D)Ambient temperature:25°CAmbient relative humidity:30%Ambient pressure:963 hPa

Test object	Test voltage û/√2	Calibration charge	Noise	Result
Α	42 kV	10 pC	≤ 3 pC	PD-level ≤ 3 pC
В	42 kV	10 pC	≤ 3 pC	PD-level ≤ 3 pC
С	42 kV	10 pC	≤ 3 pC	PD-level ≤ 3 pC
D	42 kV	10 pC	≤ 3 pC	PD-level ≤ 3 pC

Note: All test objects of the same type of termination and cable cross section were tested simultaneously.

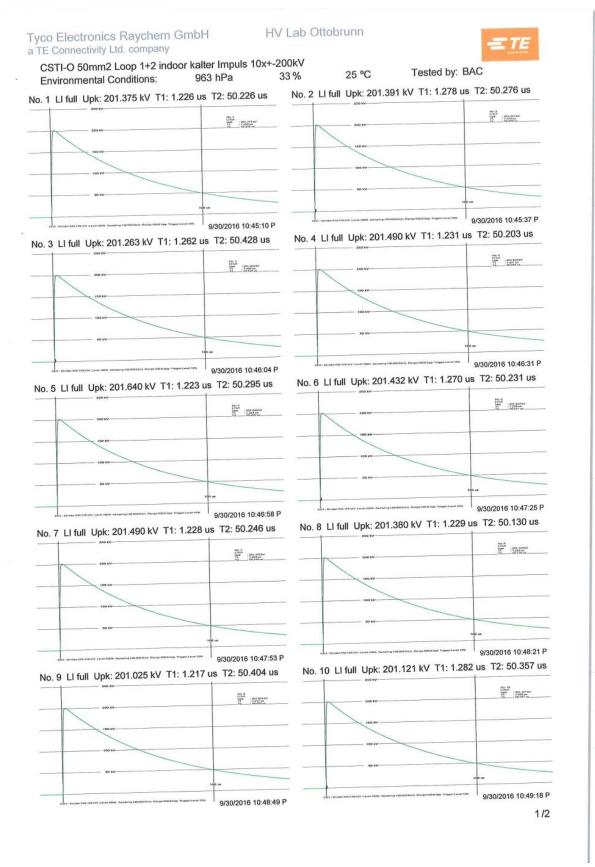
Requirement: Partial discharge level shall not exceed 10 pC.

Result: All test objects passed the test.

4.7 Impulse voltage at ambient temperature

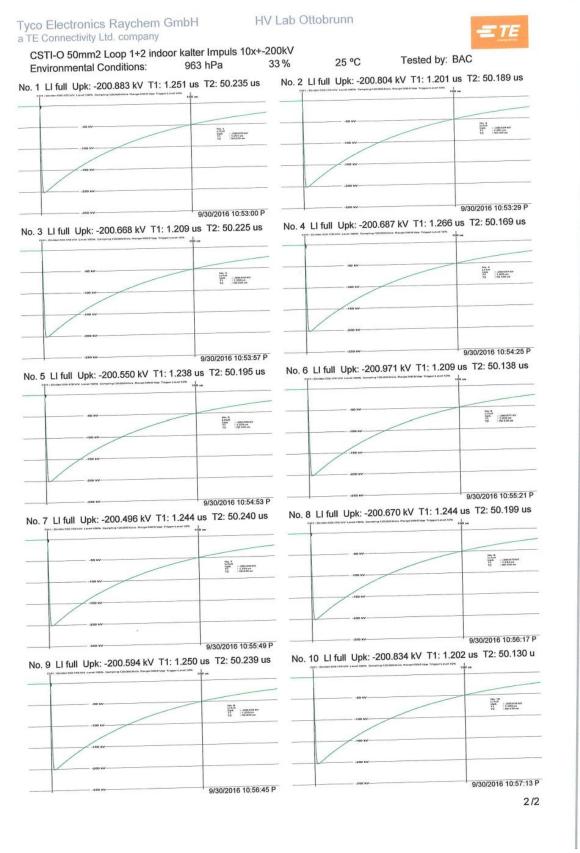
The test object were exposed to 10 impulses of positive and negative polarity each. Before each series of 10 impulses, 3 calibration impulses of 50%, 65% and 80% of the test voltage level were applied. The recorded impulses are shown in **Figure 12** to **Figure 19**.

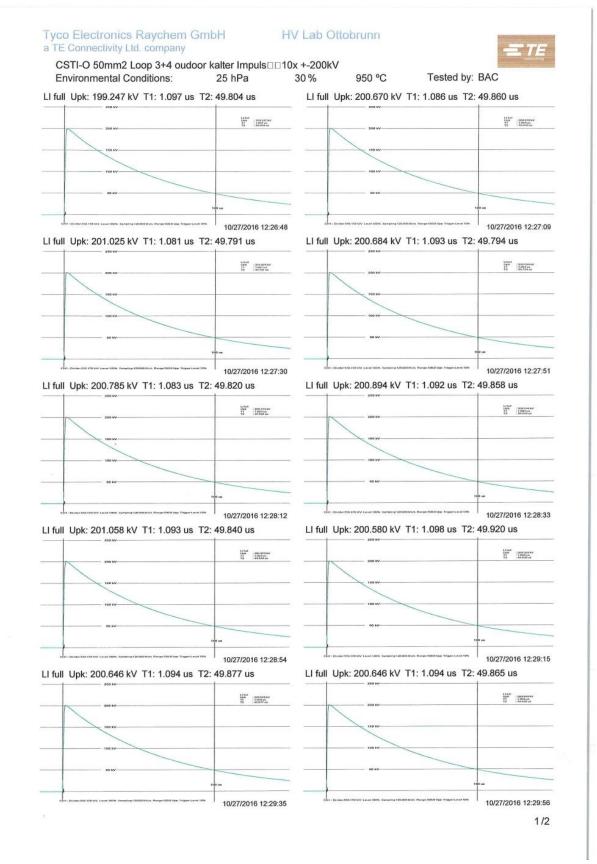
Date:	2016-12-16 (Test object A and C)
Ambient temperature:	25°C
Ambient relative humidity:	33%
Ambient pressure:	963 hPa
Date:	2017-01-11 (Test object B)
Ambient temperature:	25°C
Ambient relative humidity:	30%
Ambient pressure:	960 hPa
Date:	2017-01-17 (Test object D)
Ambient temperature:	25°C
Ambient relative humidity:	30%
Ambient pressure:	963 hPa

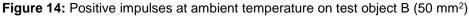

Test object	Voltage û	Front time	Time to half- value	Number of impulses	Result
	000 1 1 (1.201 µs	50.130 µs	10 of each	
A	±200 kV	to	to	polarity	No breakdown
		1.282 µs	50.428 µs	polarity	
		1.064 µs	49.695 µs	10 of each	No breakdown
В	±200 kV	to	to	polarity	
		1.098 µs	49.920 µs		
		1.494 µs	50.682 µs	10 of each	
С	±200 kV	to	to	polarity	No breakdown
		1.532 µs	50.876 µs		
D	±200 kV	1.280 µs	50.109 µs	10 of each polarity	
		to	to		No breakdown
		1.315 µs	50.373 µs		

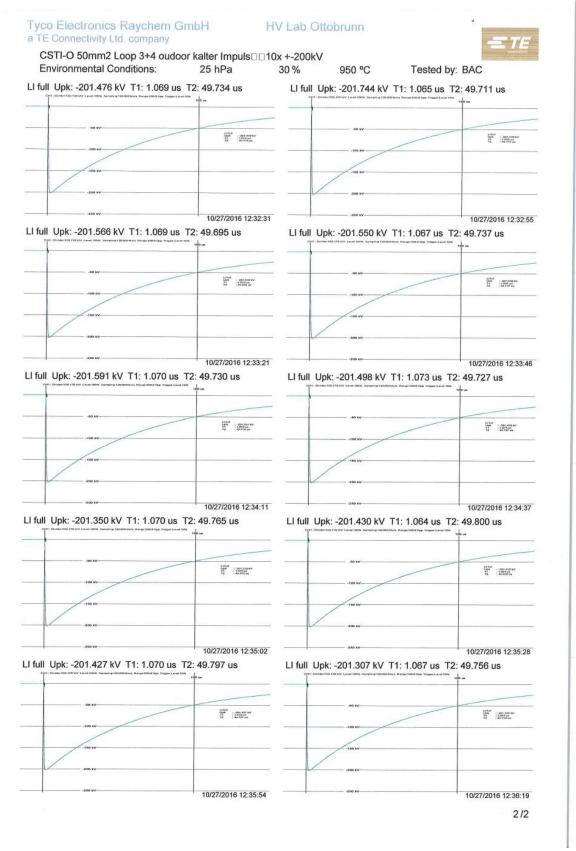
Note: All test objects of the same type of termination and cable cross section were tested simultaneously.

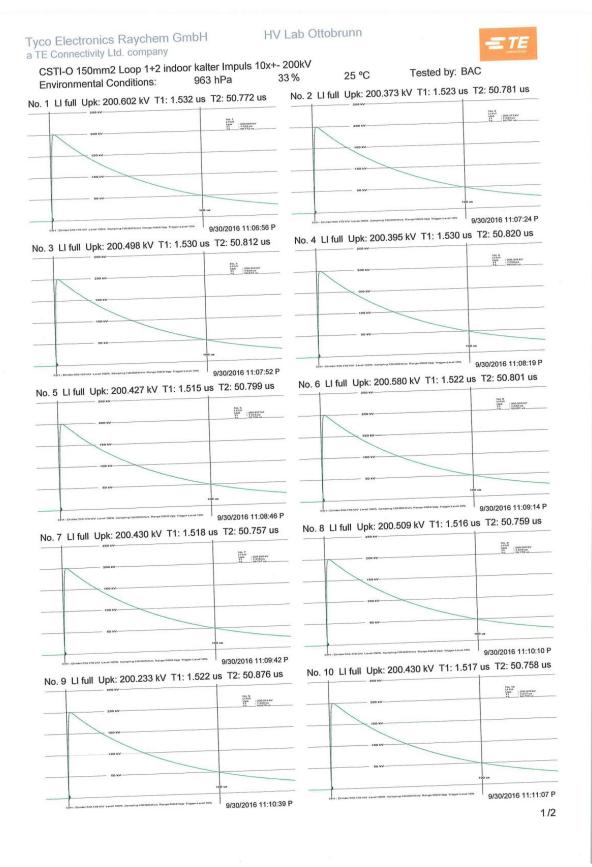
Requirement: Each test object shall withstand 10 positive and 10 negative impulses without breakdown.

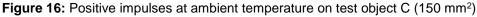
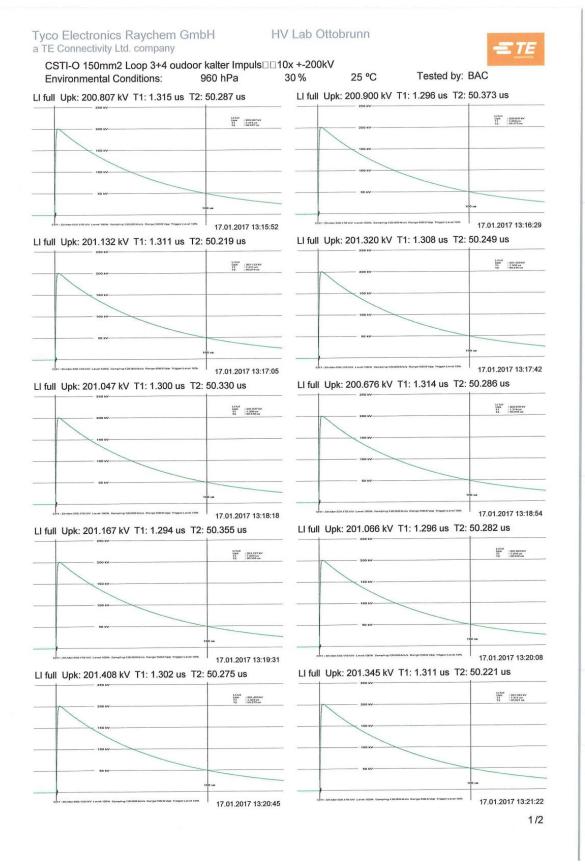

Result: All test objects passed the test.









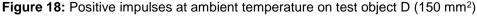


Figure 17: Negative impulses at ambient temperature on test object C (150 mm²)



Figure 19: Negative impulses at ambient temperature on test object D (150 mm²)

4.8 AC voltage dry withstand

Date:	2016-12-16 (Test object A and C)
Ambient temperature:	25°C
Ambient relative humidity:	33%
Ambient pressure:	963 hPa
Date:	2017-01-11 (Test object B)
Ambient temperature:	25°C
Ambient relative humidity:	30%
Ambient pressure:	960 hPa
Date:	2017-01-17 (Test object D)
Ambient temperature:	25°C
Ambient relative humidity:	30%
Ambient pressure:	963 hPa

Test object	Test voltage û/√2	Duration	Result
А	93,5 kV	5 min	No breakdown
В	93,5 KV		No breakdown
С	93,5 kV	5 min	No breakdown
D	90,0 KV		No breakdown

Note: All test objects installed on the same cable cross section were tested simultaneously.

Requirement: No breakdown shall occur.

Result: All test objects passed the test.

4.9 Partial discharge at ambient temperature

Date:	2016-12-16 (Test object A and C)
Ambient temperature:	25°C
Ambient relative humidity:	33%
Ambient pressure:	963 hPa
Date:	2017-01-11 (Test object B)
Ambient temperature:	25°C
Ambient relative humidity:	30%
Ambient pressure:	960 hPa
Date:	2017-01-17 (Test object D)
Ambient temperature:	25°C
Ambient relative humidity:	30%
Ambient pressure:	963 hPa

Test object	Test voltage û/√2	Calibration charge	Noise	Result
А	42 kV	10 pC	≤ 3 pC	PD-level ≤ 3 pC
В	42 kV	10 pC	≤ 3 pC	PD-level ≤ 3 pC
С	42 kV	10 pC	≤ 3 pC	PD-level ≤ 3 pC
D	42 kV	10 pC	≤ 3 pC	PD-level ≤ 3 pC

Note: All test objects of the same type of termination and cable cross section were tested simultaneously.

Requirement: Partial discharge level shall not exceed 10 pC.

Result: All test objects passed the test.

4.10 Examination

Date: 2016-12-08 (CSTI-6122-ML-2-13) 2017-01-27 (CSTO-6122-ML-2-13)

The test samples were examined for the following criteria:

- (i) cracking in the filling media and/or tape or tube components
- (ii) a moisture path bridging a primary seal
- (iii) corrosion and/or tracking and/or erosion

(iv) leakage of any insulating material

Test ob- ject	Criteria (i)	Criteria (ii)	Criteria (iii)	Criteria (iv)
А	Not found	Not found	Not found	Not found
В	Not found	Not found	Not found	Not found

4.11 Humidity test

The four test objects before and after the humidity test are shown in Figure 20 to Figure 27.

Date: 2016-12-20 – 2017-01-02 (Test object E)

Test object	Test voltage û/√2	Duration	Result
А	26 kV	300 h	No breakdown nor flashover, no more than 3 strips, no substantial damage

Requirement: No breakdown nor flashover, no more than 3 strips, no substantial damage Result: All test objects passed the test.

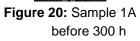


Figure 21: Sample 1B before 300 h

Figure 22: Sample 2A before 300 h

Figure 24: Sample 1A after 300 h

Figure 25: Sample 1B after 300 h

Figure 26: Sample 2A after 300 h

Figure 27: Sample 2B

after 300 h

Figure 23: Sample 2B before 300 h

4.12 Examination

Date: 2017-01-02 (CSTI-6122-ML-2-13)

The test samples were examined for the following criteria:

- (v) cracking in the filling media and/or tape or tube components
- (vi) a moisture path bridging a primary seal

(vii)corrosion and/or tracking and/or erosion

(viii) leakage of any insulating material

Test ob-	Criteria	Criteria	Criteria	Criteria
ject	(i)	(ii)	(iii)	(iv)
E	Not found	Not found	Not found	Not found

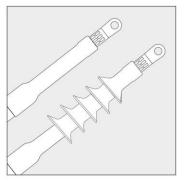
A. Appendices

A.1 Identification of	of test cable 50mm	2	
Rated voltage U ₀ /U(U _n	_n): 18/30 (36) kV		
Cable construction:	🛛 1-core	3-core	Individually screen
			Overall screen
Conductors:		🖂 Cu	
	Stranded	☐ Solid	
	🖂 Circular	Shaped	
	120mm ²	150mm ²	185mm ²
	240mm ²		
	Other cross section	n: 50 mm ²	
Insulation:		Other:	
	EPR	HEPR	
Insulation screen:	⊠ Bonded	Strippable	
Metallic screen:	🖂 Wires	Tapes	Extruded
	🗌 AI	🖂 Cu	Other
Armour:	☐ Wire	🗌 Таре	
Oversheath:	PVC	⊠ PE (state type)	
Water blocking, if any:	Within conductor	Under oversheath	
Diameters:	Conductor:	8.5 mm	
	Insulation:	25.2 mm	
	Insulation screen:	26.5 mm	
	Oversheath:	33.0 mm	
Cable marking: VDE0276 FACAB 50301 N2XSY 1 x 50RM/16mm ² 18/30 (36)k 2016			6mm² 18/30 (36)kV

A.2 Identification of test cable 150mm²

Rated voltage $U_0/U(U_n)$	n): 18/30 (36) kV			
Cable construction:	🛛 1-core	3-core	Individually screen	
			🛛 Overall screen	
Conductors:	⊠ AI	🗌 Cu		
	Stranded	☐ Solid		
	⊠ Circular	Shaped		
	120mm ²	🔀 150mm²	185mm ²	
	240mm ²			
	Other cross section	n: - mm²		
Insulation:		Other:		
	EPR	HEPR		
Insulation screen:	⊠ Bonded	Strippable		
Metallic screen:	🖂 Wires	Tapes	Extruded	
	🗌 AI	🖂 Cu	Other	
Armour:	☐ Wire	🗌 Таре		
Oversheath:	PVC	⊠ PE (state type)		
Water blocking, if any:	Within conductor	Under oversheath		
Diameters:	Conductor:	13.7 mm		
	Insulation:	30.5 mm		
	Insulation screen:	32.2 mm		
	Oversheath:	40.0 mm		
Cable marking:	g: FACAB 60102 NA2XS2Y 1 x 150RM/25 30kV 2010			

A.3 Identification of test cable 95mm²


Rated voltage $U_0/U(U_n)$	n): 18/30 (36) kV		
Cable construction:	X 1-core	3-core	Individually screen
			🛛 Overall screen
Conductors:	⊠ AI	🗌 Cu	
	Stranded	☐ Solid	
	🛛 Circular	Shaped	
	120mm ²	150mm ²	185mm ²
	240mm ²		
	☑ Other cross sectior	n: 95 mm ²	
Insulation:		Other:	
	EPR	HEPR	
Insulation screen:	⊠ Bonded	Strippable	
Metallic screen:	🖂 Wires	Tapes	Extruded
	🗌 AI	🖂 Cu	Other
Armour:	Wire	🗌 Таре	
Oversheath:	PVC	⊠ PE (state type)	
Water blocking, if any:	Within conductor	Under oversheath	
Diameters:	Conductor:	11.5 mm	
	Insulation:	28.5 mm	
	Insulation screen:	29.9 mm	
	Oversheath:	37.0 mm	
Cable marking:	VDE 0276 NA2XS(F)2	2Y 1 x 95/16 RM 18/30k	V 2015 FACAB 06201

A.4 Installation instructions

Installation Instruction EPP-2828-8/16

Raychem Termination for Screened Single Core Polymeric Cable without Armour

Type: CSTI/CSTO Indoor/Outdoor

36 kV / 42 kV

Tyco Electronics Raychem GmbH a TE Connectivity Ltd. Company TE Energy Finsinger Feld 1 85521 Ottobrunn/Munich, Germany Tel: +49-89-6089-0 Fax: +49-89-6096-345 energy.te.com

Before Starting

Check to ensure that the kit you are going to use is suitable for the size of cables being jointed. Refer to the kit label and the title of the installation instruction. Components or working steps may have been modified since you last installed this product. Carefully read and follow the steps in the installation instruction.

General Instructions

Clean and degrease all parts that will come into contact with adhesive.

If a solvent is used follow the manufacturer's handling instructions.

Check cable ends for ingress of moisture before starting with cable preparation.

For easy strip screen layers always use a round file to cut radially through the core screen.

© 2016 TE Connectivity and TE connectivity (logo) are trademarks. © 2016 TE Connectivity. All Rights Reserved.

EPP-2828-8/16 Page 2/5

The Information contained in these installation instructions is for use only by installers trained to make electrical power installations and is intended to describe the correct method of installation for this product. However, TE Connectivity has no control over the field conditions which influence product installation.

It is the user's responsibility to determine the suitability of the installation method in the user's field conditions. TE Connectivity's only obligations are those in TE Connectivity's standard Conditions of Sale for this product and in no case will TE Connectivity be liable for any other incidental, indirect or consequential damages arising from the use or misuse of the products.

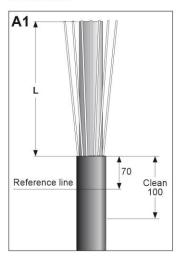
Cable Preparation

Before Starting

Check to ensure that the kit you are going to use fits the cable.

Refer to the kit label and the title of the installation instruction.

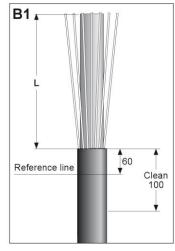
Components or work steps may have been improved since you last installed this product. Carefully read and follow the steps in the installation instruction.

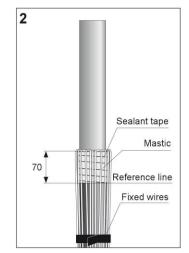

Table	for	cuthack	dimensions
lable	101	CULDACK	unnensions

	Cable	Termination
Mechanical lug BLMT	Cross Section	Indoor/Outdoor 36 kV/42 kV
	mm²	mm
BLMT 25/95	95	435
BLMT 35/150	50 Cu	460
BLMT 35/150	150 AI	450
BLMT 95/240	185	475
BLMT 95/240	240	440
BLMT 120/300	120 – 300	
BLMT 185/400	185	475
	400	445
BLMT 500/630	500 AI	485
BLMT 500/630	630 AI	485
BLMT 500/630	630 Cu	485
BLMT 800/1000	1000 AI	460

For cable cross section 50 - 630 mm²

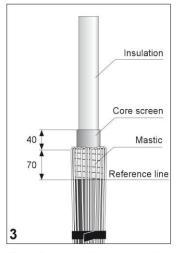
Cut the cable to the required length. Remove the oversheath according to L. Clean and degrease the end of the oversheath for approximately 100 mm.


Mark a line 70 mm below the oversheath cut.


For cable cross section 800 - 100 mm²

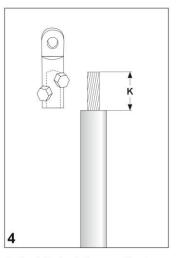
Cut the cable to the required length. Remove the oversheath according to L. Clean and degrease the end of the oversheath for approximately 100 mm.

Mark a line 60 mm below the oversheath cut.

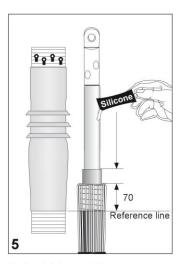


Wrap two layers of sealant tape (grey) with a small overlap and slight tension around the end of the oversheath as shown. Bend the shielding wires back onto the oversheath. Avoid crossing the individual wires. Fix the shielding wires with a tape to the oversheath.

EPP-2828-8/16 Page 3/5



Thoroughly remove the core screen to within 40 mm of the oversheath cut. The surface of the insulation should be free from all traces of conductive material. Smooth out any irregularities.

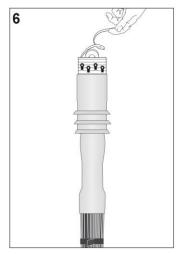

- , <u>,</u> , ,

Note: Do not nick the insulation.

Cut back the insulation according to Mechanical lugs: K = depth of cable lug barrel hole

Install the cable lug and remove all sharp edges. Clean and degrease the core insulation and the lug.

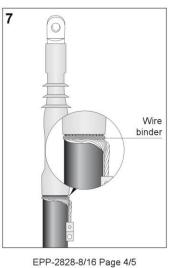
Apply a thin layer of silicone grease onto the insulation and the core screen cut.


Position the termination body.

Pull the spiral gently until the termination body butts to the reference line.

If the termination is not correctly positioned, it is possible to gently slide it into place.

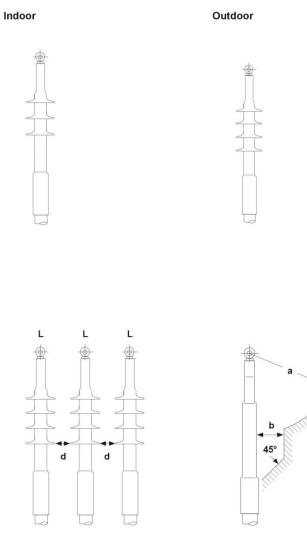
Remove the spiral holdout completely from the termination by pulling it counterclockwise.


Do not twist the spiral holdout during removal. Avoid the spiral to hook up over the termination.

Degrease and clean the termination. Fix the shield wires with a wire binder

along the lower edge of the termination body. Install the cable lug on the shield wires.

Termination completed.



Please dispose of all waste according to local environmental regulations.

Min. clearances	Max. system voltage in kV	
	36	42
a Air clearance	as for local specifications	
b ph/ph and ph/ground in mm	35	45
d Between skirts in mm	25	35

EPP-2828-8/16 Page 5/5

A.5 Kit content lists

CSTI-6122-ML-2-13

-	
482406-000	S1278-1-300(B100)
EK3103-001	EPP-2828-8/16
E74727-000	EPPA-004
724277N001	EXRM-0568
CV2903-000	EPPA-076-5
989771-000	EPPA-029-3-3000
E43601-000	HEL-2070.1-Z-AK
2304321-4	CSTI-35-BD-18-533-FS
F61108-000	BLMT-35/150-13

CSTO-6122-ML-2-13

482406-000	S1278-1-300(B100)
EK3103-001	EPP-2828-8/16
E74727-000	EPPA-004
724277N001	EXRM-0568
CV2903-000	EPPA-076-5
989771-000	EPPA-029-3-3000
E43601-000	HEL-2070.1-Z-AK
2304322-4	CSTO-35-BD-18-533-FS
F61108-000	BLMT-35/150-13